Izpitno vprašanje RAČ2PRA 3900

Iz MaFiRaWiki

(Razlika med različicami)
Različica od 22:18, 6 maj 2006
AleksandraVujasin (Pogovor | prispevki)
Primeri
← Prejšnja različica
Različica od 09:29, 8 maj 2006
AleksandraVujasin (Pogovor | prispevki)
Primeri
Naslednja različica →
Vrstica 56: Vrstica 56:
* Poglejmo si algoritem, s katerim urejamo z vstavljanjem: * Poglejmo si algoritem, s katerim urejamo z vstavljanjem:
-public static void uredi_z_vstavljanjem(int[] a) {+<java>public static void uredi_z_vstavljanjem(int[] a) {
for (int i = 1; i < a.length; i = i + 1) { for (int i = 1; i < a.length; i = i + 1) {
int j = i; int j = i;
Vrstica 66: Vrstica 66:
a[j] = t; a[j] = t;
} }
-}+}</java>
-Časovna zahtevnost je v najslabšem primeru O(n<sup>2</sup>). To dobimo iz vsote 1 + 2 + ... + (n-1) = (n - 1) * n / 2 = (n2 - n) / 2 . +Časovna zahtevnost je v najslabšem primeru O(n<sup>2</sup>). To dobimo iz vsote 1 + 2 + ... + (n-1) = (n - 1) * n / 2 = (n<sup>2</sup> - n) / 2 .
Časovna zahtevnost je v najboljšem primeru O(n). To dobimo iz vsote : 1 + 1 + 1 +...+ 1 = n - 1. Časovna zahtevnost je v najboljšem primeru O(n). To dobimo iz vsote : 1 + 1 + 1 +...+ 1 = n - 1.
Vrstica 76: Vrstica 76:
* Poglejmo si algoritem, s katerim urejamo z izbiranjem: * Poglejmo si algoritem, s katerim urejamo z izbiranjem:
-public static void uredi_z_izbiranjem(int[] a) {+<java>public static void uredi_z_izbiranjem(int[] a) {
for (int i = 0; i < a.length; i = i + 1) { for (int i = 0; i < a.length; i = i + 1) {
int j = i; int j = i;
Vrstica 88: Vrstica 88:
a[j] = t; a[j] = t;
} }
-}+}</java>
Časovna zahtevnost je v najslabšem primeru O(n<sup>2</sup>).<br/> Časovna zahtevnost je v najslabšem primeru O(n<sup>2</sup>).<br/>
Vrstica 100: Vrstica 100:
* Poglejmo si poljuben algoritem. * Poglejmo si poljuben algoritem.
- a: ponavljaj_za i := 1 do n+<java-simple>a: ponavljaj_za i := 1 do n
- b: ponavljaj_za j := 1 do n+b: ponavljaj_za j := 1 do n
- c: { vsota := 0; +c: { vsota := 0;
- e: ponavljaj_za k := 1 do n+e: ponavljaj_za k := 1 do n
- f: vsota := vsoat + a[i,k]*b[k,j];+f: vsota := vsoat + a[i,k]*b[k,j];
- g: C[i,j] := vsota }+g: C[i,j] := vsota }</java-simple>
Vrstica 116: Vrstica 116:
Časovna zahtevnost je O(n3). Torej imamo kubični čas. To dobimo iz vsote: Časovna zahtevnost je O(n3). Torej imamo kubični čas. To dobimo iz vsote:
-n*(a + n*(b + c + n*(d + e) + f)) = n*a +n<sup>2</sup>*b + n<sup>2</sup>*c + n<sup>3</sup>*d + n<sup>3</sup>*e + n<sup>2</sup>*f (a, b, c ,d ,e in f nadomestimo z preštetimi povečanji števcev, vpisi in primerjavami) in dobimo:<br/> 3*n + 3*n<sup>2</sup> + n<sup>2</sup> + 3*n<sup>3</sup> + 5*n<sup>3</sup> + 2*n<sup>2</sup> = 8n<sup>3</sup> + 6n<sup>2</sup> + 3n.+n*(a + n*(b + c + n*(d + e) + f)) = n*a +n<sup>2</sup>*b + n<sup>2</sup>*c + n<sup>3</sup>*d + n<sup>3</sup>*e + n<sup>2</sup>*f (a, b, c ,d ,e in f nadomestimo z preštetimi povečanji števcev, vpisi in primerjavami) in dobimo:<br/> 3*n + 3*n<sup>2</sup> + n<sup>2</sup> + 3*n<sup>3</sup> + 5*n<sup>3</sup> + 2*n<sup>2</sup> = 8*n<sup>3</sup> + 6*n<sup>2</sup> + 3*n.
[[Kategorija:Izpitno vprašanje]] [[Kategorija:Izpitno vprašanje]]
[[Kategorija:Računalništvo 2 (UL-FMF Praktična matematika)]] [[Kategorija:Računalništvo 2 (UL-FMF Praktična matematika)]]

Različica od 09:29, 8 maj 2006

Vprašanje

Naštej tipične razrede časovnih zahtevnosti! Za vsakega poišči konkreten primer algoritma in pokaži, da je časovna zahtevnost res takšnega reda.

Odgovor

Časovna zahtevnost je podatek o tem, koliko časa se bo program (oziroma algoritem) pri danih vhodnih podatkih izvajal, preden bo vrnil rešitev. Čas običajno merimo v osnovnih operacijah stroja, ki program izvaja. Časovno zahtevnost podamo kot funkcijo velikosti vhodnih podatkov (npr. velikost tabele). Poznamo tri vrste časovne zahtevnosti:

  • fB - najboljša možnost (best case) ali spodnja meja zahtevnosti
  • fW - najslabša možnost (worst case) ali zgornja meja zahtevnosti
  • fE - pričakovana zahtevnost (expected case) pri povprečnih podatkih

Ker je običajno natančno število operacij težko ali nemogoče določiti, uporabimo O-notacijo, ki označuje red rasti problema. Če velikost vhoda označimo z n, c pa je neka konstanta, potem imamo naslednje zahtevnosti, od najugodnejše do najneugodnejše:

Notacija Zahtevnost
O(1) konstantna (preproste operacije kot so izpis vzorca,...)
O(logn) logaritmska (množenje)
O(n) linearna (vsota n - števil)
O(nlogn) vmesna (quicksort)
O(n2) kvadratna (množenje matrik)
O(n3) kubična (reševanje sistema linearnih enačb)
O(nc), c<1 polinomska
O(cn) eksponentna (rekurzija)

Primeri

Poglejmo si nekaj primerov uporabe časovne zahtevnosti :

  • Poglejmo si algoritem, s katerim urejamo z vstavljanjem:

  1. public static void uredi_z_vstavljanjem(int[] a) {
  2. for (int i = 1; i < a.length; i = i + 1) {
  3. int j = i;
  4. int t = a[j];
  5. while (j > 0 && a[j-1] > t) {
  6. a[j] = a[j-1];
  7. j = j - 1;
  8. }
  9. a[j] = t;
  10. }
  11. }

Časovna zahtevnost je v najslabšem primeru O(n2). To dobimo iz vsote 1 + 2 + ... + (n-1) = (n - 1) * n / 2 = (n2 - n) / 2 .

Časovna zahtevnost je v najboljšem primeru O(n). To dobimo iz vsote : 1 + 1 + 1 +...+ 1 = n - 1.

Pričakovana časovna zahtevnost je O(n2).

  • Poglejmo si algoritem, s katerim urejamo z izbiranjem:

  1. public static void uredi_z_izbiranjem(int[] a) {
  2. for (int i = 0; i < a.length; i = i + 1) {
  3. int j = i;
  4. for (int k = i; k < a.length; k = k + 1) {
  5. if (a[k] < a[j]) {
  6. j = k;
  7. }
  8. }
  9. int t = a[i];
  10. a[i] = a[j];
  11. a[j] = t;
  12. }
  13. }

Časovna zahtevnost je v najslabšem primeru O(n2).
To dobimo iz vsote: (n*2[primerjanje in prirejanje] + 3[prirejanja]) + ((n-1)*2 + 3) +(n-2)*2 + 3) +... + (1*2 + 3) = 2*(n + (n-1) + ... + 2 + 1) + n*3 = n*(n + 1) + n*3 = n*(n + 4) = n2 + 4*n

Časovna zahtevnost je v najboljšem primeru O(n).

Pričakovana časovna zahtevnost je O(n log n).

  • Poglejmo si poljuben algoritem.

a:   ponavljaj_za  i := 1 do n
 
b:       ponavljaj_za  j := 1 do n
 
c:         { vsota  := 0;            
 
e:        ponavljaj_za  k := 1 do n
 
f:             vsota  := vsoat + a[i,k]*b[k,j];
 
g:    C[i,j] := vsota }


Časovna zahtevnost je O(n3). Torej imamo kubični čas. To dobimo iz vsote:

n*(a + n*(b + c + n*(d + e) + f)) = n*a +n2*b + n2*c + n3*d + n3*e + n2*f (a, b, c ,d ,e in f nadomestimo z preštetimi povečanji števcev, vpisi in primerjavami) in dobimo:
3*n + 3*n2 + n2 + 3*n3 + 5*n3 + 2*n2 = 8*n3 + 6*n2 + 3*n.

Osebna orodja