On the maximum number of independent elements in configurations of points and lines (Seminar DM)

Iz MaFiRaWiki

On the maximum number of independent elements in configurations of points and lines.

Tomaž Pisanski


Torek, 22. februar 2011, od 10-12, Plemljev seminar, Jadranska 19


Povzetek: We show that the upper bound for the maximum number of independent elements of a (vr) configuration is given by \lfloor 2v/(r+1) \rfloor and that this bound is attained for all integer values of r by geometric configurations of points and lines in the Euclidean plane. This disproves a conjecture by Branko Grünbaum.


Glej tudi/See also


Seminar za diskretno matematiko

Osebna orodja