# Odvodi elementarnih funkcij

 Ta članek ali del članka je v delu. Veseli bomo, če ga boste dopolnili in popravili.
Funkcija Odvod
f(x) = c f'(x) = 0
f(x) = xc f'(x) = cxc − 1
f(x) = cx f'(x) = cxlnc
f(x) = ex (e je Eulerjevo število) f'(x) = ex
f(x) = logax $f'(x) = \frac{1}{x \cdot \ln{a} }$
f(x) = lnx $f'(x) = \frac{1}{x}$
f(x) = sinx f'(x) = cosx
f(x) = cosx f'(x) = − sinx
$f(x) = \operatorname{tg}x$ $f'(x) = \frac{1}{\cos^2{x}}$
$f(x) = \operatorname{cotg}x$ $f'(x) = -\frac{1}{\sin^2{x}}$
f(x) = arcsinx $f'(x) = \frac{1}{\sqrt{1-x^2} }$
f(x) = arccosx $f'(x) = -\frac{1}{\sqrt{1-x^2} }$
$f(x) = \operatorname{arctg} x$ $f'(x) = \frac{1}{1+x^2}$
$f(x) = \operatorname{arccotg} x$ $f'(x) = -\frac{1}{1+x^2}$
$f(x) = \operatorname{sinh}x$ $f'(x) = \operatorname{cosh} x$
$f(x) = \operatorname{cosh} x$ $f'(x) = \operatorname{sinh}x$
$f(x) = \operatorname{tgh} x$ $f'(x) = \frac{1}{\operatorname{cosh}^2 x}$
$f(x) = \operatorname{cotgh} x$ $f'(x) = - \frac{1}{\operatorname{sinh}^2 x}$
$f(x) = \operatorname{arcsinh} x$ $f'(x) = \frac{1}{\sqrt{1 + x^2}}$
$f(x) = \operatorname{arccosh} x$ $f'(x) = \frac{1}{\sqrt{x^2 - 1}}$
$f(x) = \operatorname{arctgh} x$ $f'(x) = \frac{1}{1 - x^2}$
$f(x) = \operatorname{arccotgh} x$ $f'(x) = - \frac{1}{1 - x^2}$